
comprehensive art ic les

Bringing Computational Thinking to K-12
continued

52 acm Inroads 2011 March • Vol. 2 • No. 1

! Team work by students, with explicit use of:
• decomposition - breaking problems down into smaller parts

that may be more easily solved,
• abstraction - simplifying from the concrete to the general as

solutions are developed,
• negotiation - groups within the team working together to

merge parts of the solution into the whole, and
• consensus building - working to build group solidarity

behind one idea or solution.

In attempting to define a classroom culture that would be most
conducive to computational thinking, the participants identified
strategies or characteristics that could be considered broadly
beneficial to any learning experience. These included:

! Increased use by both teachers and students of computational
vocabulary where appropriate to describe problems and solutions;

! Acceptance by both teachers and students of failed solution
attempts, recognizing that early failure can often put you on
the path to a successful outcome;

CT Concept,
Capability

CS Math Science Social Studies Language Arts

Data collection

Find a data source for
a problem area

Find a data source for
a problem area, for
example, flipping coins
or throwing dice

Collect data from an
experiment

Study battle statistics
or population data

Do linguistic analysis
of sentences

Data analysis

Write a program to
do basic statistical
calculations on a set
of data

Count occurrences of
flips, dice throws and
analyzing results

Analyze data from an
experiment

Identify trends in data
from statistics

Identify patterns for
different sentence
types

Data representation

Use data structures
such as array, linked
list, stack, queue,
graph, hash table, etc.

Use histogram, pie
chart, bar chart to
represent data; use
sets, lists, graphs, etc.
To contain data

Summarize data from
an experiment

Summarize and
represent trends

Represent patterns
of different sentence
types

Problem
Decomposition

Define objects and
methods; define main
and functions

Apply order of
operations in an
expression

Do a species
classification

Write an outline

Abstraction

Use procedures to
encapsulate a set
of often repeated
commands that
perform a function;
use conditionals,
loops, recursion, etc.

Use variables in
algebra; identify
essential facts in a
word problem; study
functions in algebra
compared to functions
in programming;

Use iteration to solve
word problems

Build a model of a
physical entity

Summarize facts;
deduce conclusions
from facts

Use of simile and
metaphor; write a
story with branches

Algorithms &
procedures

Study classic
algorithms; implement
an algorithm for a
problem area

Do long division,
factoring; do carries in
addition or subtraction

Do an experimental
procedure

Write instructions

Automation

Use tools such as:
geometer sketch pad;
star logo; python code
snippets

Use probeware Use excel Use a spell checker

Parallelization

Threading, pipelining,
dividing up data or
task in such a way
to be processed in
parallel

Solve linear
systems; do matrix
multiplication

Simultaneously run
experiments with
different parameters

Simulation

Algorithm animation,
parameter sweeping

Graph a function in a
Cartesian plane and
modify values of the
variables

Simulate movement of
the solar system

Play age of empires;
Oregon trail

Do a re-enactment
from a story

TABLE 1: CORE COMPUTATIONAL THINKING CONCEPTS AND CAPABILITIES

